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a b s t r a c t

An augmented method based on a Cartesian grid is proposed for the incompressible
Navier–Stokes equations in irregular domains. The irregular domain is embedded into a
rectangular one so that a fast Poisson solver can be utilized in the projection method.
Unlike several methods suggested in the literature that set the force strengths as
unknowns, which often results in an ill-conditioned linear system, we set the jump in
the normal derivative of the velocity as the augmented variable. The new approach
improves the condition number of the system for the augmented variable significantly.
Using the immersed interface method, we are able to achieve second order accuracy for
the velocity. Numerical results and comparisons to benchmark tests are given to validate
the new method. A lid-driven cavity flow with multiple obstacles and different geometries
are also presented.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the following incompressible Navier–Stokes equations in an irregular domain RnX:
q
@u
@t
þ ðu � rÞu

� �
þrp ¼ lDuþ G; x 2 R nX; ð1:1Þ

r � u ¼ 0; x 2 R nX; ð1:2Þ
uj@R ¼ u@R; uj@X ¼ u@X; BC; ð1:3Þ
uðx;0Þ ¼ u0; IC; ð1:4Þ
where Gðx; y; tÞ is an external forcing term, R is a rectangular domain, and X is a set of inclusions (obstacles), see Fig. 1 for an
illustration. We assume that q ¼ 1 in this paper.

Since the inclusion X is irregular inside a regular computational domain R, one interesting numerical issue is how to im-
pose the prescribed velocity condition at the immersed boundary @X, particularly, when the boundary is moving. While
. All rights reserved.
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Fig. 1. A diagram for the Navier–Stokes equations on an irregular domain.
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there are a number of numerical methods for solving Navier–Stokes equations in irregular domains, we are interested in
Cartesian grid based finite difference methods. One of the main motivations using Cartesian grid methods is to avoid mesh
generation for moving boundary problems. Cartesian grid methods also enable us to use some commonly used fast solvers
such as FFT for solving Poisson/Helmholtz equations.

Among Cartesian grid based finite difference methods, one common approach is to use a streamfunction–vorticity formu-
lation, see for example, [3,20,16]. In these methods, the domain is embedded into a rectangular one so that the immersed
interface method can be used to get second order accuracy for the vorticity. But this formulation is often restricted to
two-dimensional problems only.

A second type of finite difference methods is based on the projection method for small to medium Reynolds number flow,
see for example, [9,21]. This type of method has been modified to compute large eddy simulations as well, see for example,
[19] for a brief review and the references therein. In these methods, the boundary is treated as an immersed interface that
exerts forces to the surrounding fluid. The force density is chosen so that the boundary condition is satisfied. The problem in
finding such force strengths is an inverse problem and it is ill-conditioned. Different strategies have been developed to reg-
ularize the problem. In [22], the method was coupled with an optimal control; in [10], singular value decomposition is used.
In most of these methods, the boundary is represented by a set of control points (or a cubic spline). The condition number of
the system of equations is often very large and depends on the number of control points. The ill-conditioned system may
affects the accuracy of the computed solution in an adversely way.

Other related work can be found in [5,17]. The method in [5] used a direct discretization for a similar but different problem.
Advantages of the method proposed in [5] are its simplicity and symmetry of the system of equations on the entire domain. The
PCG method was applied to the entire system with OðN2Þ unknowns at every time step. One of disadvantages is that a fast Pois-
son solver can not be used. The stair-case approximation of the boundary proposed in [5] is less accurate than our approach that
takes into account of the curvature of the boundary. In [18], the authors proposed a Cartesian method to simulate the incom-
pressible flows around stationary or moving immersed boundaries. The finite difference discretization near the interface or
boundary is modified so that an algebraic multigrid solver can be applied. Again, a fast Poisson solver based on the FFT can
not be applied there. In an earlier work of Ye et al. [23], the authors used a finite volume method for a similar problem.

In order to overcome the difficulty, many attempts have been made to utilize a Helmholtz/Poisson solver on irregular do-
mains based on a second order augmented immersed interface method in [6,12,15]. In an augmented immersed interface
method, an augmented variable (often is one dimension lower than that of the solution) is introduced so that the IIM can
be easily implemented. The solution then is a functional of the augmented variable and should satisfy the boundary or inter-
face condition, which is the augmented equation. In this paper we develop such a method for the incompressible Navier–
Stokes equations in irregular domains.

By investigating the source of the stiffness, we have found that the stiffness is from the force in the normal direction that
corresponds to the jump in the pressure. Based on the fact that the pressure in Navier–Stokes equations is not a free variable,
we propose a new method that sets the jump in the normal derivative of the velocity as augmented variables. This new
method improves the condition of the Schur complement system for the augmented variables significantly compared to
the method that sets the force density as the augmented variable.

In an augmented method, it is relatively easy to choose and test different augmented variables with a few modifications,
see [11,12]. In [13], the jump in the velocity was chosen as the augmented variable for the two-phase incompressible Stokes
equations. We choose the jump in the normal derivative of the velocity for the Navier–Stokes equations because it is easier to
deal with the nonlinear term since the velocity is continuous.

We use a zero level set of a Lipschitz continuous function to represent the boundary which is more flexible for multi-con-
nected domains. At each time step, the linear system of equations for the augmented variable can be solved by the GMRES
method, or by LU decomposition if we form the coefficient matrix at the first time step. The latter approach is especially effi-
cient for stationary boundary problems and long time runs.
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The rest of the paper is organized as follows. In Section 2, we present an augmented method for solving (1.1)–(1.4) within the
framework of the projection method. The novelty of our approach and the implementation issues are described in detail. In Sec-
tion 3, numerical results for non-trivial examples are presented and analyzed. Conclusions will be given in Section 4.

2. The numerical algorithm

Our numerical method is based on the projection method for solving the incompressible Navier–Stokes equations. There
are several versions of the projection method for solving the incompressible Navier–Stokes equations, see for example,
[1,7,8] and many others. The projection method that we used in our method is the one described in [2] which is based on
the pressure increment formulation of [1,7].

As mentioned before, we assume that the domain R is a rectangle ½a; b� � ½c; d� with holes X. The spatial spacing is chosen
as hx ¼ ðb� aÞ=M, hy ¼ ðd� cÞ=N, where M and N are the number of grid points in the x and y-directions, respectively. We use
a standard uniform Cartesian grid for simplicity. The time integration from tk to tkþ1 can be written as:
Table 1
A grid r
cond1 is
the coe

(a) Diri

M � N
64 � 32
128 � 6
256 � 1
512 � 2

(b) Diri

M � N
64 � 32
128 � 6
256 � 1
512 � 2

(c) Diric
almo

M � N
64 � 32
128 � 6
256 � 1
512 � 2
u� � uk

Dt
þ ðu � ruÞkþ

1
2 ¼ �rpk�1

2 þ l
2 ðDu� þ DukÞ þ Gkþ1

2 if x 2 R nX
l
2 ðDu� þ DukÞ if x 2 X

(
ð2:5Þ

u�j@R ¼ u@Rðx@R; tkþ1Þ; ð2:6Þ

½u��@X ¼ 0;
@u�

@n

� �
@X

¼ qkþ1; u�j@X ¼ u@Xðx@X; tkþ1Þ; ð2:7Þ

D/kþ1 ¼ r�u�Dt ; x 2 R;
@/kþ1

@n

���
@R
¼ 0; ½/kþ1�@X ¼ 0; @/kþ1

@n

h i
@X
¼ 0;

8<
: ð2:8Þ

ukþ1 ¼ u� � Dt;r/kþ1; x 2 R; ð2:9Þ
where ðu � ruÞkþ
1
2 is approximated by
ðu � ruÞkþ
1
2 ¼ 3

2
ðuk � rÞuk � 1

2
ðuk�1 � rÞuk�1: ð2:10Þ
The solution u� above is a functional of the augmented variable qkþ1 which should be determined by imposing the boundary
condition
u�j@X ¼ u@Xðx@X; tkþ1Þ: ð2:11Þ
The Eqs. (2.5)–(2.11) now become a complete system for ðu�;qkþ1;/kþ1;ukþ1Þ. Once we have solved this system, then the
pressure is determined from
pkþ1=2 ¼ pk�1=2 þ /kþ1; x 2 R nX: ð2:12Þ
efinement analysis against the exact solution at final time T ¼ 5. kEuk1 is the maximal error in the velocity, kEpk1 is the maximal error in the pressure,
the condition number of the coefficient matrix for the unknown jump in the normal derivative of the velocity, while cond2 is the condition number of

fficient matrix when we set the normal and tangential force strengths as the unknowns.

chlet BC on all sides, l ¼ 0:5.

kEuk1 r1 kEpk1 r2 cond1 cond2 CPUðsÞ
4.8913 10�3 3.3494 � 10�2 17.686 4.4674 � 103 0:8656

4 1.1499 � 10�3 2.0887 8.3891 � 10�3 1.9973 19.206 1.0545 � 104 5.2305
28 2.7371 � 10�4 2.0708 5.8427 � 10�3 0.5219 28.046 8.5386 � 105 42.072
56 6.6709 � 10�5 2.0367 2.5283 � 10�3 1.2085 46.338 1.0199 � 107 281.12

chlet BC on all sides, l ¼ 0:005.

kEuk1 r1 kEpk1 r2 cond1 cond2

1.0918 � 10�1 3.1598 � 10�2 58.888 6.4600 � 104

4 1.7605 � 10�2 2.6326 6.5403 � 10�3 2.2724 19.356 1.1110 � 106

28 2.9241 � 10�3 2.5899 1.2525 � 10�3 2.3845 13.447 3.1600 � 107

56 3.4913 � 10�4 3.0622 2.7237 � 10�4 2.2012 9.7787 1.006 � 1010

hlet BC for u on x ¼ a, for v on x ¼ a, y ¼ c, and y ¼ d. Neumann BC for u on x ¼ c, y ¼ c, and y ¼ d, for v on x ¼ b, l ¼ 0:005. The condition numbers are
st the same as in table (b) above so we did not list them.

kEuk1 r1 kEpk1 r2

8.8951 � 10�2 1.3054 � 10�1

4 1.7636 � 10�2 2.3344 3.4977 � 10�2 1.9000
28 2.9041 � 10�3 2.6024 1.4110 � 10�2 1.3097
56 3.4473 � 10�4 3.0745 6.6851 � 10�3 1.0785
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There are two novel ideas that are significantly different from other methods in the literature. First, we set the jump in the
normal derivative of the velocity as the augmented variable so that the system (2.5)–(2.7) is complete for ðu�;qkþ1Þ. Here,
qkþ1 represents the augmented variable, and the augmented equation is u�j@X ¼ u@Xðx@X; tkþ1Þ. Secondly, we apply the aug-
mented approach for the coupled system of ðu�;qkþ1Þ so that a fast Helmholtz solver can be applied when we use GMRES to
solve the Schur-complement system for the augmented variable qkþ1, see Section 2.3 for more details.

We also have tested the method by embedding the Navier–Stokes equations to the entire domain and selecting the nor-
mal and tangential forces along the boundary as augmented variables as described in several papers in the literature. The
resulting Schur-complement system is severely ill-conditioned, see Table 1 for an illustration. But our selection of the aug-
mented variable ½@u�

@n �@X ¼ qkþ1 results in a very well-conditioned system. Since we are only interested in the solution in the
region of R nX, the other terms such as ðu � ruÞkþ1=2 andrpk�1=2 can be treated as a forcing term in the elliptic equations that
do not need to be extended. These quantities at irregular grid points where the boundary @X cuts through the standard cen-
tral 5-point stencil, can be approximated by a one-sided interpolation scheme.

Note that Eq. (2.8) is also solved on the entire rectangular domain R so that the same fast Poisson solver can be used. Note
also that, the above algorithm is equivalent to the following formulation without introducing any augmented variable in the
domain R nX:
1 In r
u� � uk

Dt
þ ðu � ruÞkþ

1
2 ¼ �rpk�1

2 þ l
2
ðDu� þ DukÞ þ Gkþ1

2; x 2 R nX

u�j@R ¼ u@Rðx@R; tkþ1Þ; u�j@X ¼ u@Xðx@X; tkþ1Þ

D/kþ1 ¼ r � u
�

Dt
; x 2 R nX;

@/kþ1

@n

�����
@R

¼ 0;

ukþ1 ¼ u� � Dtr/kþ1; x 2 R nX;

r � ukþ1 ¼ 0; x 2 R nX:
Remark 1. The projection method that we currently used is a version based on the pressure increment formulation [1,2,7] in
which the no-slip boundary conditions at the embedded boundary @X and the physical boundary @R are imposed for the
intermediate velocity u� instead of ukþ1. This kind of simplification is made to be consistent with the efficiency of the
projection method of Navier–Stokes solver and has also been used in [21]. Since we are interested in the solution outside
the embedded boundary, (we disregard the computed solution inside the boundary), all we need to care is whether the
solution satisfies the no-slip boundary condition in a suitable accuracy comparable with the fluid solver accuracy. As
discussed in [4], the spurious slip velocity error of ukþ1 at the boundary is of second order. One may think of such error could
cause the possible fluid penetration (leakage) into or out of the embedded boundary. In fact, we have also implemented the
following alternative approach by setting
ukþ1j@X ¼ u@Xðx@X; tkþ1Þ
as the constraint (the augmented equation) instead of using
u�j@X ¼ u@Xðx@X; tkþ1Þ:
In such case, the entire system for solving ðukþ1;qkþ1; pkþ1Þ with the augmented variable ½@u�
@n �@X ¼ qkþ1 are all coupled to-

gether. This approach is more expensive since each iteration requires to solve one more Poisson equation for /kþ1. However,
the results are almost the same. From the numerical experiments that we conduct in this paper, the effect of fluid penetra-
tion in present simulations caused by the enforcement of no-slip condition for u� instead of ukþ1 is not that significant. As a
matter of fact, for the simulation of flow past a circular cylinder in Section 3, our present method obtains comparable results
with others by comparing the drag, lift and Strouhal numbers.
2.1. Some implementation details

The method can be implemented with different representations of the boundary @X. If a front-tracking method is used,
then the augmented variable qkþ1 ¼ ½@u�=@n� is defined at a set of control points (Lagrangian markers) as discussed in
[21,10,22]. In our present scheme, the boundary @X is represented by a zero level set of a Lipschitz continuous function (of-
ten an approximated signed distance function). The augmented variable is defined at those orthogonal projections of irreg-
ular grid points1 located outside the domain X. The level set representation is more flexible to deal with multi-connected
domains, or moving objects with possible topological changes (merging and splitting).
eference to the standard 5-point centered difference stencil.



2620 K. Ito et al. / Journal of Computational Physics 228 (2009) 2616–2628
2.2. Solving an elliptic interface problem with singular sources

As described before, our scheme consists of solving two generalized Helmholtz equations for the intermediate velocity u�

in (2.5), and one Poisson equation for the pressure increment /kþ1 in (2.8) with a given jump condition in the normal deriv-
ative of the velocity. The details for solving Helmholtz/Poisson equations with jump conditions in the solution and its normal
derivative (or the elliptic PDEs with singular sources) can be found in [11,14,12]. Here, we just give a brief sketch on how we
solve such problems in an efficient and accurate way. Without loss of generality, we consider the following generalized
Helmholtz equation
wxx þ wyy � kw ¼ f ; ðx; yÞ 2 R;

½w�@X ¼ 0;
@w
@n

� �
@X

¼ q:
ð2:13Þ
In our application, we have k ¼ 2=ðlDtÞ for the prediction step, and k ¼ 0 for /kþ1 in (2.8). Since k is a constant, a fast Poisson
solver can be used.

The finite difference discretization using the immersed interface method can be simply written as
Wiþ1;j þWi�1;j � 2Wi;j

h2
x

þWi;jþ1 þWi;j�1 � 2Wi;j

h2
y

� kWij ¼ f ðxi; yjÞ þ Cij; ð2:14Þ
where the correction term Cij is zero at regular grid points where the boundary @X does not cut through the standard cen-
tered 5-point stencil. The correction term Cij at those irregular grid points can be determined in a dimension by dimension
fashion, see [14] for the formula of Cij.

2.3. The augmented method

The procedure of an augmented approach varies with different applications and can be found in [12,13]. Here, we give a
brief description for our particular problem in this paper. From time tk to tkþ1, given the jump ½@u�=@n� ¼ qkþ1, or Q kþ1 in the
discrete form, the discrete solution U� for u� satisfies a linear system
AU� þ BQ kþ1 ¼ F1; ð2:15Þ
where the matrix A corresponds to the prediction step (2.5)–(2.7), and the vector BQ kþ1 corresponds to the correction term
Ci;j in (2.14) due to the jump condition ½@u�

@n �@X ¼ qkþ1. The boundary condition (2.11) (or the augmented equation)
u�j@X ¼ ukþ1

@X is discretized via a least squares interpolation, and can be written in the discrete form
CU� þ DQ kþ1 ¼ Ukþ1
@X : ð2:16Þ
If we put those two matrix–vector Eqs. (2.15) and (2.16) together, we get
A B
C D

� �
U�

Q kþ1

� �
¼

F1

Ukþ1
@X

� �
: ð2:17Þ
In practice, we do not need to form the matrices A, B, C, and D. Note that the dimension of Q kþ1 is Oð2NÞ (assuming M � N),
which is much smaller than that of U� (Oð2N2Þ).

Eliminating U� from Eq. (2.17), we get the Schur-complement system for Q kþ1;
ðD� CA�1BÞQ kþ1 ¼ Ukþ1
@X � CA�1F1 ¼def F2; or EQ kþ1 ¼ F2: ð2:18Þ
Note that E is not symmetric in general. We can either use a direct method or an iterative method to solve the linear system
(2.18) for Q kþ1 depending on different situations. If the boundary @X is stationary and the time step is fixed, it is more effi-
cient to use a direct method (say, Gaussian elimination with partial pivoting) since the coefficient matrix E is a constant ma-
trix. Thus, we can form the coefficient matrix E explicitly and apply the LU decomposition to it directly. This is also
advantageous for long time runs since the costly LU decomposition needs to be done just one time in the beginning. For a
moving boundary problem, the matrix E is not a constant so it is more efficient to use an iterative method. In this case, it
is recommended to use GMRES iteration.

Three Helmholtz/Poisson solvers are needed to evaluate EQ kþ1 or A�1F1. First, the prediction step for u� requires a fast
Helmholtz solver on a rectangular domain for each velocity component. Secondly, the projection step requires a fast Poisson
solver for /kþ1 given u�. For stationary boundary @X and fixed time step Dt, all the matrices are constant matrices that de-
pend on the fast Helmholtz/Poisson solver, and the interpolation scheme for the boundary condition.

Since we do not form the matrices A, B, C, and D explicitly, one question is how to use an iterative or direct method. This
has been explained in detail in our recent work [12,13]. First, we set Q kþ1 ¼ 0 and then solve the Navier–Stokes equations.
The residual of the linear system (2.18) (or the difference between the exact and the computed boundary condition), is actu-
ally the right hand side of the Schur complement with an opposite sign. Next, we explain how to find the matrix–vector mul-
tiplication given Q , a guess of Q kþ1. This again involves only two steps: (1) solving (2.15) by given Q , to get Ukþ1;�ðQ Þ, where
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we use the superscript ðkþ 1; �Þ to indicate that the solution is not the final solution at time tkþ1 yet; (2) interpolating
Ukþ1;�ðQ Þ at @X via the least squares interpolation. Once we know the matrix–vector multiplication, we can apply the GMRES
or other iterative method easily.

Also, we can form the coefficient matrix E of the Schur-complement by setting Q kþ1;� ¼ e‘, the ‘th unity vector, l ¼ 1;2; . . ..
For a stationary interface and a fixed time step, this is needed just initially.

The idea of the augmented method has been explained in [11,12] for elliptic interface problems with piecewise constant
coefficient, and Poisson equations on irregular domains. The Fortran code is available to the public either by request or by
anonymous ftp.

3. Numerical examples

In this section, we present some numerical results for solving the velocity and pressure in (1.1)–(1.4) up to some fixed
time T. All the computations were performed at the North Carolina State University using notebook or desktop computers.
Most simulations are done within minutes to a couple of hours depending on the mesh, the geometric properties of @X, and
the final time T.

Example 1. Validation of the method against an exact solution
We first consider an example with the exact solutions as
uðx; y; tÞ ¼ sinðtÞ y
r � 2y
� �

if r P 1=2
0; otherwise;

(
ð3:19Þ

vðx; y; tÞ ¼ sinðtÞ � x
r þ 2x

� �
if r P 1=2

0; otherwise
;

(
ð3:20Þ

pðx; y; tÞ ¼
cosðpxÞ cosðpyÞ if r > 1=2
0; otherwise

;

	
ð3:21Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The obstacle is a circular disk whose boundary is a circle r ¼ 1=2. The solution domain is

R ¼ ½�2;2� � ½�1;1�. The source term G is derived directly from the exact solution.
In Table 1, we show the grid refinement analysis for different viscosity and boundary conditions. Since we are interested

in the computed solutions in the domain R nX, we set
kEuk1 ¼maxx2
i
þy2

j
P1=4fjUij � uðxi; yj; TÞjg þmaxx2

i
þy2

j
P1=4fjVij � vðxi; yj; TÞjg
to be the error in the velocity at time T, and
kEpk1 ¼ maxx2
i
þy2

j
P1=4fjPij � pðxi; yj; TÞjg;
to be the error in the pressure. The numbers r1 and r2 are the approximated order of accuracy from the two consecutive er-
rors for the velocity and pressure, respectively. The number cond1 is the condition number of the coefficient matrix for the
unknown jump in the normal derivative of the velocity proposed in this paper, while cond2 is the condition number of the
coefficient matrix that we set the normal and tangential force strengths as the unknowns. One can easily see that our pro-
posed method has much better conditioned system than those that set the normal and tangential force strengths as the
unknowns.

In Table 1(a) and (b), the velocity are prescribed along all four sides of the rectangular domain and @X with the final time
T ¼ 5. In Table 1(a), the viscosity is l ¼ 0:5 which corresponds to a small Reynolds number while in Table 1(b), the viscosity
is l ¼ 0:005 which corresponds to a larger Reynolds number. In Table 1(c), we use the Dirichlet boundary condition from the
exact solution for u and x ¼ a, for v on x ¼ a, y ¼ c, and y ¼ d. We use the Neumann boundary condition from the exact solu-
tion for u on x ¼ c, y ¼ c, and y ¼ d, for v on x ¼ b. The viscosity is l ¼ 0:005 and the final time is T ¼ 5. The purpose of this
simulation is to mimic the set-up for the next example, flow past a circular cylinder.

In all cases, we clearly obtain second order accuracy for the velocity. The accuracy of the pressure is between first and
second order. Note that, the pressure correction scheme proposed in [2] does not seem to improve the accuracy of the pres-
sure because the boundary @X is arbitrary.

Example 2. Flow past a circular cylinder
We now present our numerical simulations for a classical benchmark problem of simulating the flow around a circular

cylinder and compare our results with those published in the literature. For small Reynolds number (Re < 47), the flow
structure remains symmetric with stationary recirculating vortices behind the cylinder. As the Reynolds number increases,
the symmetry breaks down and the vortex starts to shed up and down alternately.

The problem set-up is similar to those in the literature [21]. The infinite domain is truncated to a rectangular domain
½a; b� � ½c; d� that contains a circular cylinder centered at ðx0; y0Þ. The far-field boundary condition from the left is given by
u ¼ U1;v ¼ 0 for t > 0. We have tested a number of parameters and set-ups. Unless stated otherwise, the plots shown in this
section for flow past a circular cylinder are all calculated using the finest mesh 900 � 450 in the domain ½�10;10� � ½�5;5�
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with the cylinder center ð�5;0Þ to minimize the effect from the approximated boundary conditions. We also fix U1 ¼ 1 and
the radius of the cylinder r0 ¼ 0:5, but vary the Reynolds number Re ¼ 2r0U1=l ¼ 1=l. All of the results agree with those in
the literature very well, particularly with the latest second order method using vorticity–streamfunction formulation [3]. We
run our tests to a final time T ¼ 60 or longer. In the GMRES approach (without forming the coefficient matrix), the time step
is chosen as
ðDtÞk ¼min
h
2
;

h

2 maxfjUk
ijj þ jV

k
ijkg

( )
; h ¼minfhx;hyg; ð3:22Þ
where Uk
ij and Vk

ij are the computed velocity at a grid point ðxi; yjÞ at time level tk. For long time computations, it is faster to
form the coefficient matrix if Dt is fixed. We take the CFL condition as 0:5 for Re 6 100, and 1=6 for Re ¼ 150;200. We show
our result at the final time T ¼ 60 or longer. Most of computations were done within a few minutes to a couple of hours
depending on the mesh size. For example, for Re ¼ 100 and the mesh size 900 � 450, the entire simulation took about
132 min.

In Fig. 2, we show the plots of the vorticity contours. The plots show very good agreement with the results in [3] where
the streamfunction–vorticity formulation is used. The contours in the wake of cylinder for Re ¼ 20 has slightly wider opening
than that of Re ¼ 40. For Re ¼ 80, the vortex shedding behavior has been fully developed.

In Fig. 3, we show a grid convergence analysis of the drag coefficient between 0 6 t 6 60 for the case Re ¼ 40. The dash-
dotted line is the result obtained from the coarse grid 226 � 113; the dashed line is from a finer grid 450 � 225; and the
solid line is the result from the finest grid 900 � 450. One can see that as the grid refines, the drag coefficient approaches to
CD ¼ 1:6622 which is also listed in Table 2.

In Fig. 4, we show the plots of a few selected streamlines for Re ¼ 20 and Re ¼ 40. The flow remains perfectly symmetric.
The size and the length of the stationary recirculating vortices behind the cylinder are also in a very good agreement with
known results in the literature.

In Fig. 5, we show the vorticity contour plots for different Reynolds numbers Re ¼ 100;150;200. The characteristic vortex
shedding has been fully developed for all the cases.

In Tables 2 and 3, we list the drag and lift coefficients, Strouhal numbers, and compare with some of recent results in the
literature. The drag and lift coefficients are computed according to the following formulas given in [3]:
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Fig. 2. Vorticity plots (�2.5:0.2:2.5) for Re ¼ 20;40;80 at time T ¼ 60.
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Table 3
The comparison of maximum lift coef�cients (C

LStC LStPresent 013068 0.162 0.605 0.204
Suetal. [21] 0134 0.168 – –

Calhoun[3] 0.298 - 0.668 –
Xuetal. [22]0134 0.171 0.66 0.202

Russelletal.[20] 01300 0.169 0.67 0.195
Leetal.[10] 01323 0.160 0.43 0.187
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CD ¼
l

U2
1

Z 2p

0
�xðhÞ þ r

@xðhÞ
@n

� �
sinðhÞdh; ð3:23Þ

CL ¼ �
l

U2
1

Z 2p

0
�xðhÞ þ r

@xðhÞ
@n

� �
cosðhÞdh; ð3:24Þ
where r is the radius of the circular obstacle, and h is the angle between the outward-directed normal to @X and the x-axis.
Here, the vorticity x and its normal derivative @xðhÞ

@n can be computed using the velocity as x ¼ vx � uy and
@xðhÞ
@n

¼ @x
@x

cosðhÞ þ @x
@y

sinðhÞ ¼ ðvxx � uxyÞ cosðhÞ þ ðvxy � uyyÞ sinðhÞ ¼ ðvxx þ vyyÞ cosðhÞ � ðuxx þ uyyÞ sinðhÞ:
D) and Strouhal number (St) for Reynolds numbers Re¼ 100 and Re¼ 200.Re¼100 Re ¼200

C
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Fig. 6. Plot of the drag coefficient as the function time for Re ¼ 200 between 150 6 t 6 200.

K. Ito et al. / Journal of Computational Physics 228 (2009) 2616–2628 2625
Note that, since the vorticity and its normal derivative is needed only on the interface, we use a second order one-sided least
squares interpolation, for instance,
uxðX�;Y�Þ ¼
Xns

ðxi ;yjÞ2RnX
cijUij;

uxxðX�; Y�Þ ¼
Xns

ðxi ;yjÞ2RnX

�cijUij;
to approximate those partial derivatives at a number of equally spaced points ðX�;Y�Þ on @X. The number of grid points (in
the neighborhood of ðX�;Y�Þ) ns is taken to be 9 � 12 but only requires a second order accurate scheme (that is, matching up
to second partial derivatives). The linear system of equations for the interpolation coefficients cij and �cij is under-determined
but is solvable. We use the singular value decomposition (SVD) to solve for the coefficients. Using this approach, the com-
puted partial derivatives have almost the same order of accuracy as the interpolation function itself.

We can see good agreements of our results in the drag coefficients. The lift coefficient also agrees with those in the
literature for Re ¼ 100. It is a little under-estimated for Re ¼ 200, more so as in the results presented in [10,20]. One of
possible explanations may be that the projection method works well for small Reynolds numbers, but not for large ones, or/
and that the domain is not large enough. We have observed that the position of the cylinder has some effect on CL when
Re ¼ 200. In Fig. 6, we plot the time evolution of the drag coefficient for the case Re ¼ 200.

In Fig. 7(a)–(c), we show the vorticity plots for the flow past different dumbbell-shaped objects. In (a) and (b), we have the
same geometry but different l, l ¼ 0:05 for (a) and l ¼ 0:01 for (b). In (c), we have the same l as in (b) but with a different
geometry. It is clear that no vortex shedding is observed in this flow. In Fig. 7(d), we show the vorticity plot of the flow
around two circular cylinders located at different p